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Complete solutions for a model with chiral dynamics 
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London E l  4NS, UK 

Received 23 February 1973 

Abstract. A mechanical analogue for the chiral SU(2) x SU(2) invariant field theory for 
massless pions has as its classical lagrangian L = fqigi,q'. The coordinates qi parametrize 
a manifold (in fact a three-sphere) on which dqig,j dqj is the SU(2) x SU(2) invariant metric. 
The classical equations of motion are for uniform geodesic motion, and in the corresponding 
quantum mechanical case the Schrodinger equation is the Laplace-Beltrami-Poisson 
equation. Both sets of equations are solved completely with attention paid to the conserved 
quantities, that is, the generators of the invariance group SU(2) x SU(2). The passage to 
the limiting case, in which the manifold becomes flat, is also described. 

1. Introduction 

We have recently (Charap 1973) considered a simple model analogue of the chiral 
invariant dynamics of zero-mass mesons. In this model, instead of considering a 
multiplet of fields, with the appropriate gradient self-couplings of a chiral invariant 
theory, we work with a system having only a finite number of degrees of freedom. Thus 
in the case of SU(2) x SU(2), instead of the isotopic triplet of pion fields +(2, t ) ,  we 
consider an isotopic triplet of variables q(t). It is important to emphasize that there is 
no 2 dependence in the model whatever ; and of course the time t enters parametrically 
into the theory. The classical system has a lagrangian 

L = +$gij(q)$* (1.1) 

In this expression we have introduced the velocities 

dq' 
dt 

q' = - 

where of course q' ( i  = 1,2,3) are the components of the coordinate triplet q. The 
matrix gij plays the role of a metric on a manifold, the points of which have coordinates q. 
The form of gij, which is chosen to make the lagrangian invariant, depends on the 
transformation of q under the action of the group SU(2) x SU(2), which is given an 
action point-wise on the manifold. With the usual separation of the generators of the 
group into V(the triplet of generators of the parity-conserving diagonal isospin subgroup) 
and A (the pure chiral generators) we have the algebra 
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and the transformation law 

[vi, q j ]  = i&jkqk, (1.4) 

[A', 4'1 = i p ( q ) .  (1.5) 

There is an undetermined function f ( q 2 ) ,  with q2 = qiqjdij, which, once specified, fixes 
bothf'j and gij. We shall remind the reader of the relevant formulae below. Although 
equations (1.3)-(1.5) have been written with commutator brackets, that is, in a form 
appropriate for a quantum-mechanical treatment, exactly similar equations also hold 
in classical mechanics, with the usual substitution 

(1.6) {Poisson bracket} -+ - i [commutator]. 

$+ r j k q j q k  = 0, (1.7) 

The equation of motion for the classical system with lagrangian (1.1) is 

with the Christoffel symbol defined as usual 

(1.8) Ti, = t il 
j k  2g (glj,k+glk,j-gjk,l). 

We adopt the notation g" for the elements of the matrix inverse to the metric gjk; also 
&,,k denotes dglj/aqk E akgIj, etc. 

If we write g for the determinant of the metric 

g E detltgijll~ (1.9) 

the Laplace-Beltrami operator on the manifold parametrized by q is 

(1.10) 

Then in a quantum-mechanical treatment of the analogous system, still with chiral 
invariance, we may set up a Schrodinger representation with q diagonal and wave- 
functions $(q, t) normalized so that 

(1.11) 

To preserve this group-invariant normalization, the time-dependent Schrodinger 
equation is 

iDr$ = H$, (1.12) 

with the conservative time-derivative D, given by 

D, = g-  1/4a/atg1/4, (1.13) 

and the hamiltonian H given by 

H =  -LA 2 2 '  (1.14) 

If, as in the case of present interest, g has no explicit time dependence, D, = a/&, and 
the Schrodinger equation is 

ia+/at = H $ .  (1.15) 

The object of this paper is to give complete, exact solutions of the classical and 
quantum-mechanical equations of motion, namely, of the equations (1.7) and (1.12). 
Before we do this we shall, in the next section, give a brief summary of some well known 
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expressions for the metric and related quantities in a few specific parametrizations. Then 
in Q 3 we discuss and solve the classical equations of motion, and in Q 4 do the same for 
the quantum-mechanical case. 

2. The metric and related quantities 

As remarked in the previous section, the chiral transformations of the coordinates q, 
as given by (1.5), leave unspecified a single function f ( q 2 )  (see Weinberg 1968). To be 
explicit, if for a given functionf(q’) we define h(q’) by 

then a possible form for the quantity f ”  in (1.5) is 

(2.2) f i j  = f p i j  + hQij, 

where we have found it convenient to introduce the projections defined by 

pij E ,p- Q i j  (2 .3~)  

Q i j  qiqj /q2.  (2.3b) 

A change of parametrization of the manifold consistent with leaving invariant the 
form of (1.4) is 

q + q * =  94(q2). (2.4) 
The resulting transformation under the axial generators is then given by an expression 
like (1.5), but with f ’ j  replaced by what results from (2.2) by writing q* everywhere 
instead of q and changing f (q ’ )  to  f*(q*’) defined through 

f*(q*2) = f*1q’(4(q2))2) = f (q2W(q2) .  (2.5) 
Expressed in terms of the function f(q2), the arbitrariness of which is evidenced 

(2.6) 
The quantityf, is a constant, usually chosen so that gij = 6, when q = 0, in which 
case it is clear that f, = f(0). We also have directly 

through (2.5), the metric g i j  which makes invariant the lagrangian (1.1) is? 

gij = f ;{( f ’  + 4’)- ‘Pi j+ h-’Qij}. 

g i j  = f ,2{(f2+qZ)pij+hZQiJ}, (2.7) 

2.1. 0 model parametrization 

One very common choice (eg Bardeen and Lee 1969) for f(qZ) is simply$ 

f“ = (”I-: - 4 Y 2 *  (2.9) 

t No significance should be attached to the difference between upper and lower indices on the projections 
P and Q. 
$ The suffix U is introduced to distinguish this parametrization. 
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Evidently with this choice, since 

d+f: = f:? (2.10) 

the three coordinates q; together with f, may be seen to give the coordinates on a 
three-sphere of radius f, of a point (q,, f) in a four-dimensional space. Indeed the mani- 
fold parametrized by q, is just this three-sphere S,.  If we introduce the angle 8 (see 
figure 1) by 

(2.11) 

(2.12) 

q, = f, sin 8, 

f, = f, cos 8, 

we evidently have 

and also 

h, = f, COS 8, 

f y = f, cos 86", 

g .. = P U l J  SlJ  

g, = sec2@ 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Figure 1. The U model parametrization. 

2.2. Weinberg's parametrization 

An alternative parametrization (Weinberg 1968) may be obtained by stereographic 
projection onto the tangent hyperplane at q = 0 from the opposite pole of S, (see 
figure 2). Thus we may write 

qw = 2f, tan $8, 

from which follows 

fw = f,( 1 - tan2 $e), 
h ,  = f,( 1 +tan2 +e), 
g w i j  = cos4 @6,,, 

g ,  =  COS^^@ 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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Figure 2. Weinberg's parametrization. 

2.3. Normal coordinates 

Another obviously useful parametrization (cf, eg, Callan et a1 1969, see also Coleman 
et a1 1969, and Isham 1969) is given by 

qN = f z e ,  (2.22) 

for which we have 

fN = f n e  cot e, (2.23) 

h N  = f n i  (2.24) 

g N i ,  = PNij(sin e/e)2 + QNij, (2.25) 

g ,  = (sin @/e)". (2.26) 

2.4. Tangential parametrization 

The choice of parametrization we shall most often use is another kind of stereographic 
projection, this time from the centre of S ,  onto the tangent hyperplane at q = 0 (see 
figure 3). We will use symbols without a distinguishing suffix for this parametrization. 
Accordingly we have 

q = f ,  tan8, (2.27) 

Figure 3. Tangential parametrization 
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f = f,l (2.28) 

h = f, sec2@, (2.29) 

gij = COS’BP,~ + cos4@Qij, 

= cos*e. 

(2.30) 

(2.3 1) 

This parametrization leads to a very simple expression for the Christoffel symbol, 
namely 

rij = -f;2 Cos2e(6ik6~+6jk6f)qk. (2.32) 

3. The classical equations of motion 

The equation of motion (1.7) is that for uniform motion along the geodesics of the 
manifold with coordinatesq and metric gij. Thus in the present case it is uniform motion 
on the geodesics of S3 ,  and these are of course the great circles of the hypersphere. The 
advantage of the tangential parametrization is now evident, since every great circle is 
mapped by the stereographic projection from the centre of the hypersphere into a 
straight line in the tangent hyperplane. Of course the motion is no longer uniform 
along the straight line projection. Furthermore as the coordinate varies once around 
the great circle, the image point traverses the straight line twice. 

Using (2.32), the equations of motion become 

q = q d(ln sec2B)/dt, 

q2 = J: tan2@ (3.2) 

(3.1) 
together with 

Let us define a by 

(3.3) 
Then it is an immediate consequence of (3.1) that the isotriplet a is a constant of the 
motion, 

We make the ansatz 

a = - f - 1  cos2eg. 

a = 0. (3.4) 

4 = ,L(b - a 4  
with 

b .  U dijbiaJ = 0. 

4 = f,(b - dh - ah) = f,(b - uh), 

Then from 

together with (3.3) and (3.6), it follows that 

b = 0. (3.8) 

v . a  = 0, (3.9) 

It is convenient to  introduce instead of b another constant isovector U ,  defined so that 

v = 0, 

b = U x ala2, (3.10) 
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where in the usual way the 'vector product' is defined so that 

(U x a)' = fijkdak. (3.11) 

Then we have 

U =  f i l a x q .  

q2 = f : ( h 2 a 2  +v2 /a2 ) ,  

Using 

and introducing w through 

0 2  = lI2 + 2, 

sec2@ = (q2  + f :)/ f :  = h2a2 + w2/a2,  

q = - f,ah. 

we have 

and 

Comparing with (3.3) we obtain 

h = h2a2 + w2/a2, 

so that 

a2h = w tan{o(t-ro)), 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

where t o  is a constant of integration. This means that the complete solution of the 
equations of motion (3.1) is given by 

(3.19) 

The significance of the constant ismectors u and a may be seen by recognizing that 
the generators Vand A introduced in (1.3) are given explicitly in terms of the coordinates 
q and the velocities 4 by 

q = f , [u  x a- wa tan{o(t - to)}]/a2. 

(3.20) 

(3.21) 

(3.22) 

This means that we have, with the present coordinates 

A = - f ; ( f : + q 2 ) - ' 4 ,  (3.23) 

V = f i  ' A  x q. (3.24) 

I fwe evaluate these expressions for the motion given by (3.19) we obtain 

A = f : a  v =  ffu. (3.25) 

So we may rewrite (3.19) as 

q = f,{ V x  A -f;wA tan{w(t-tt,))]/A2, 

with 
f:w2 = V 2 + A 2 .  

(3.26) 

(3.27) 
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The hamiltonian for the motion may be written as 

H = ( V 2  + A2)/2f :, (3.28) 

so that the energy E of the motion is given by 

E = -$ fi02. (3.29) 

As previously indicated. the trajectories in the tangent hyperplane are straight lines. 

Y -+ J = constant (3.30a) 

U - A /  f, -+ constant. (3.30b) 

It is amusing to consider the limit f, -+ 00 taken in conjunction with 

For then we find 

E -+ +U', (3.31) 

and in the limit the trajectory becomes 

4 N u ( t - r t , ) + J x U / U 2 ,  (3.32) 

which is of course that of a particle moving freely with uniform velocity U and angular 
momentum J ;  the energy is appropriate for such a motion because the choice of scale, 
so that gi j  = d i j  when q = 0, ensures that in the limit the lagrangian becomes just -$q2, 
appropriate to a free particle of unit mass. 

4. The quantum-mechanical equation of motion 

It follows from (1.12) that the general wavefunction is a linear superposition of stationary 
state wavefunctions, which in the usual way satisfy the time-independent Schrodinger 
equation 

H* = E*, (4.1) 
and have time dependence 

$ = $(t = 0) exp( - iEt). 

Accordingly we turn our attention to the solution of (4.1) which, with the form (1.14) 
for the hamiltonian, becomes 

A2$+2E$ = 0. (4.3) 
Guided by the considerations of the previous section, we will write 4 in terms of 

4 = (4, a, B). (4.4) 

L = - iVxq,  (4.5) 

E a/aqi, (4.6) 

polar coordinates, thus 

Introducing L by 
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and, for q # 0, 

Furthermore, it follows directly from the definition (1.10) of the Laplace-Beltrami 
operator, and the expression (2.7) for gij ,  that we have 

g - 1 / 2  d 
(f2+q2)ViPijVj+h2ViQijVj+- -(h2gli2)q. V). (4.10) 

4 dq 
Using (2 .3~)  and (4.7) to (4.9), this results in the form, valid for q # 0, 

To include also the point q = 

IIl/(2g'i2 d3q = 

(4.1 1) 

0, the square integrability condition 

1, (4.12) 

must be supplemented by the condition 

lim qIl/(q) = 0. 
q-0 

(4.13) 

This condition is of course already familiar from the analogous situation which arises 
on the usual separation by polar coordinates of the Schrodinger equation for a single 
particle in three dimensions. 

We now recognize that the operator L2 in (4.11) acts only on the variables a, fl ,  so 
that if we write 

we have 

L211/r(d = U+ l)Il/r(d, (4.15) 

in the usual way. Furthermore, since any wavefunction can be expanded as a super- 
position of solutions like (4.14), we are left with the problem of solving 

(4.16) 
subject to the conditions 

(4.17) 

and 

The different parametrizations discussed in Q 2 correspond to different ways of ex- 
pressing the variable q in terms of, let us say, the angle 8. The invariant choice of 
normalization (4.18) means that we always find 

(4.19) g'/'(q)q2 dq = f l  sin28 de. 
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If we go, for example, to the particular parametrization used in the previous section, 
so that once again 

(4.20) 

which has the advantage that h 2 g ” 2  = f i  so that the last term on the left-hand side 
of (4.16) is absent, we can obtain the equation 

4 = f ,  tan 8, 

d2 I ( / +  1) 

where we have defined 

v(0) = sin t9q51, 

and 

e = 2Ef :. 
The square integrability condition is now 

4q-; ja”” Iv(e)l2 de  = 1, 

v(e) = o 
Introduce z and w by 

z = sin2& 

w = (sin O ) - ’ - ’ u ?  

and we obtain the hypergeometric equation 

and the regularity condition at q = 0 becomes 

for e = 0.71. 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

d2 d 
dzZ dz 

z ( l - ~ ) - - w + { ( l + ~ ) - - ( I + 2 ) z ) - w - ~ { ( l +  l)’-(e+ l ) > w  = 0. (4.28) 

With the identification of parameters 

c( = ) { l +  1 + J ( e +  I)}, 

we obtain for v the general soiution 

/? = ) { I +  1 -,/(e+ I)}, y = l + $ ;  (4.29) 

C‘ = A z ” ~ “ + ~ ) F ( ~ , ~ ; . / ; z ) + B z - ~ ’ ~ ~ F ( ~ - ~ +  1 , / ? - ~ + 1 ; 2 - . / ; ~ ) .  (4.30) 

The condition (4.25) applied for 8 = 0 implies, for each value of /, that B = 0. In order 
to apply the condition at 0 = z, it is necessary to increase 8 through in, so that the 
variable z increases to z = 1 and then decreases again to zero. As this happens it is 
important to go around the branch point (at z = 1)  of the function U (see figure 4). The 

z = o  .?=I -r- 
Figure 4. The branch cuts of the function U. As 8 increases from zero to n, the point z follows 
a contour as  indicated, going round the branchpoint ai z = 1 as 8 goes through )z to emerge 
onto the second sheet of U (where the contour is shown as a broken line). 
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solution (4.30), with B set to zero, may be written as the sum of two contributions. 

c = e,+c,, (4.31) 

where e ,  is regular at z = 1, and eo has a square root type branchpoint at z = 1. The 
effect of going round the branchpoint at z = 1 is thus to leave U, unaltered but to change 
the sign of e,. We have ensured that the condition (4.25) is satisfied at 6' = 0. which 
means that the combination (4.31) vanishes at z = 0. To satisfy (4.25) also at 6' = 7c 

means therefore that u , - L ' ,  also vanishes at z = 0. But any two functions c which 
satisfy (4.21) and vanish at z = 0 must be proportional, so that either e ,  or eo must 
vanish identically. I t  is easy to confirm that we have 

(4.32) 

wheref, andf, do  nor vanish identically. Hence we require that one of or, j, CI +$, j+i 
is a negative integer or zero. This will be true if and only if 

for k = 0, 1.2, 3, .  . . . e + l  = (k+l+1)2  

The solution then becomes 

c = A(sin 6')'+'F(l+ 1 + $ k ,  - i k ;  l + $ ;  sin2@, 

which can also be expressed in terms of the Gegenbauer polynomial C r  ' as 

L' = N(sin O)'+'CL+ '(cos e). 
The normalization constant required for conformity with (4.24) is 

N = 7~-'2'-'I! { ( k + I +  l)k!}"2{f~(k+21+ 1 ) ! ) - ' l 2 .  

What we have found is that the energy eigenvalues are given by 

E = if; 24j( j +  I), 

with 

j = + ( k + I )  = O,+,  I , ; , .  . . . 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

This is exactly what was to be expected from the observation which follows from (3.28), 
namely that we may define operators V, by 

V ,  = ) ( V + A ) ,  (4.39) 

which themselves satisfy 'angular momentum' commutation relations, and since 
V .  A = 0, this enables us to write 

H =$fi24V: =$f-'4V_Z. (4.40) 

The eigenvalue relations (4.37), (4.38) follow directly. I t  should be emphasized that the 
possible values of I are integers because of the structure of (4.5). However, no such 
structure is valid for V, , and half-integer eigenvalues for j are permissible. 

It is once again interesting to examine the limitf, -+ x, with K = k f ;  ' and r = Of, 
approaching finite values. A quadratic transform of the hypergeometric function in 
(4.34) gives 

F(l+ 1 +& -$k; l++;  sin'@ = eikeF( - k ,  1 + 1 ; 2l+ 2; 2i sin 6' e-ie). (4.41) 
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Under the above limiting process this gives, by confluence of the hypergeometric function 

eiKrlFl(/+ I ; 2 /+2 ;  -2iKr) = 2 r ( / + ~ ) ( ~ ~ r ) - l n - l ' ~ j ~ ( ~ r ) .  (4.42) 

We also have 

A(sin O ) l + l  = r(21+.k+2)jr(21+2)r(k+ l ) } - ' ~ ( s i n  e)I+l 

- ~ ( ~ K r ) f + 1 ( n f ; 2 ) - ' / 2 { r ( / + ~ ) ~ - 1 .  (4.43) 

c' (2.1r)-1f;3/2 (Kr ) j f (K4  (4.44) 

Hence in the limit we have 

which is just as was to be expected the regular solution to the equation 

+ K 2  u(r)  = 0;  1 d2 E ( / +  1) 
dr2 r2 

(4.45) 

this equation, which may be obtained from (4.21) by going to the limit, is of course the 
reduced radial wave equation for a wavefunction of angular momentum / in a flat space. 
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